

Searches for Heavy Resonances at DØ

Ioannis Katsanos

University of Nebraska - Lincoln
for the DØ Collaboration

Outline

- * Introduction
- * Theory
- * Tevatron DØ Detector
- * Analyses
- * Limits
- * Summary and Conclusions

Introduction What is a Z'?

- * From a Theorist point of view
 - * A Z' is a "heavy" neutral gauge boson (spin 1)
 - * Examples can be a new U(1) gauge boson; Kaluza-Klein modes of γ , Z, ...
- * From an Experimentalist's point of view:
 - * A Z' is a "heavy" object which appears as a "narrow" resonance
 - * Examples can be extra gauge bosons; Randall-Sundrum KK gravitons; KK modes of γ, Z, ...; Exotic Higgses (eg in SUSY);...
- * Both points of view are valid, although it is important to define what we mean by "heavy" and "narrow" so we communicate better
 - * Z' ⇔ Heavy Resonances
 - * "Heavy" \Rightarrow Above the reach of LEP (~200 GeV)
 - * "Narrow" \Rightarrow Natural width less than the detector (calorimeter) resolution

Theory Z' Boson

- * Various extensions of the Standard Model often postulate an additional U(1) group to its gauge structure (SU(3)_C \otimes SU(2)_L \otimes U(1)_Y)
 - * Additional group may arise in models derived from grand unified theories (GUT)
 - * Gives rise to associated gauge bosons (commonly referred to as Z' bosons), which are electrical neutral, spin 1 particles
- * Such Z' bosons typically couple to SM fermions through electroweak interaction
 - * Can be observed at hadron colliders as narrow resonances through the process

$$q\bar{q} \rightarrow Z' \rightarrow e^+e^-$$

Theory Z' Boson

- * Plethora of Z' models
- * One way to distinguish these models is by the strength of their coupling constants
 - * If electroweak scale couplings, models are called "canonical"
 - * Sequential SM Z' boson
 - * Same couplings as SM Z boson
 - * Width $\Gamma_{Z'} = \Gamma_Z \times m_{Z'} / m_Z$ (for $M_{Z'} > 2m_t$ the decay channel to t-tbar opens)
 - * The E6 models: E6 \rightarrow SO(10)×U(1) $_{\psi}$ and SO(10) \rightarrow SU(5)×U(1) $_{\chi}$
 - * Gives rise to additional $Z'(\theta) = Z'_{\chi}\cos\theta + Z'_{\psi}\sin\theta$, where $0 \le \theta \le \pi$
 - * Z'_{χ} ($\theta = 0$) is a special case in another set of models (T_{3R} and B-L models)
 - * Stuckelberg model: Example of a model with non-standard couplings ("non-canonical") *PLB* 586 (2004) 366
 - * Gives rise to a very narrow Z' (for $M_{Z'} = 300 \text{ GeV}$, $\Gamma \sim 20 \text{ MeV}$)
 - * Parameters of model, mass mixing ε and $M_{Z'}$

Theory Randall - Sundrum Model

- * Randall Sundrum Model (RS) describes a 5 dimensional warped geometry
 - * SM fields: weak-brane; Gravity: gravity-brane
- * Any mass parameter M on the weak-brane yields to a physical mass M_0 in the higher dimensional theory
 - * $M = M_0 \cdot e^{-kr\pi}$, where $e^{-kr\pi}$ is the warp factor, k is the curvature scale, and r (=r_c) is the compactification radius of the extra dimension
 - * kr_c = 11-12 yields SM observed electroweak/gravity scale

Theory Randall - Sundrum Model

- * Compactification of 5th dimension gives rise to KK gravitons (G*)
 - * The only particles that propagate in the 5th dimension
 - * Spin 2
 - * Universal coupling to SM fields
 - * Parameters used
 - * Mass of lightest KK graviton M₁
 - * Dimensionless coupling constant k/\bar{M}_{Pl}

*
$$0.01 \le \bar{k}/M_{Pl} \le 0.1$$

$$BR(\gamma\gamma)/BR(ee) = 2$$

Instrumentation Accelerator and Detector

Fermilab Tevatron Collider

- * Proton-antiproton collider with 1.96 TeV center-of-mass energy
- * Single magnet ring protons and antiprotons circulate in opposite directions
- * Close to 12 fb⁻¹ delivered. More than 2 fb⁻¹ per year delivered

DØ Detector

- * General purpose detector
 - * Tracking system
 - * Calorimeter
 - * Muon system
- * Coordinates system
 - * Cylindrical with z along the beam axis
 - * $\eta = -\ln[\tan(\theta/2)]$
 - * p_T Momentum transverse to the beam axis

Analysis Strategy

- * Search for narrow resonances on the invariant mass spectra of ee and $\gamma\gamma$ decay channels
- * To optimize sensitivity and maintain flexibility, split the data into dielectron and diphoton samples based on tracking information
- * Derive contribution of each SM background by fitting to the data invariant mass spectrum in a control region around the Z peak
- * Normalize the background shapes to their contributions in the control region and extrapolate into the signal region
- * Search for excesses. In absence of a significant excess, proceed with setting limits

Data Selection EM Objects Identification

- * Goal is to select EM objects and remove background
- * Sources of background:
 - * π^0 showers that can overlap with nearby track
 - * Charged pions
 - * Jet Fluctuations

- * EM particles are reconstructed using energy deposited at the four EM calorimeter layers and the first hadronic
- * EM objects need to have $p_T > 25$ GeV and $|\eta| < 1.1$
 - * Focus only in events where both objects are in Central Calorimeter. Adding objects in the End-Caps would improve by ~2% our sensitivity in the signal region, while having higher background contributions
 - * Select events with at least two EM objects
 - * Choose the two highest p_T EM objects

Data Selection EM Objects Identification

- * Both EM candidates are required to pass relatively "Loose" EM ID algorithm that uses calorimeter information
- * To be included in the dielectron sample both objects should pass track match requirements
 - * No opposite charge requirement, due to increased charge misidentification in the signal region
- * To be included in the diphoton sample at least one object should fail the track match requirements

Backgrounds

- * Physics backgrounds
 - * Drell-Yan $(\mathbb{Z}/\gamma^* \to ee)$
 - * Main irreducible background
 - * SM γγ production
 - * "Other SM" background
 - * $Z/\gamma^* \rightarrow \tau\tau$, $W\gamma$, WW, ZZ, WZ, W+jets, t-tbar
 - * Studied in Monte Carlo using PYTHIA
- * Instrumental Background: Fake objects from QCD events
 - * Dielectron: Jet + Jet
 - * Diphoton: γ + Jet and Jet + Jet
 - * Shape is estimated from data using a sample rich in misidentified EM objects
 - * Sample is acquired by inverting the calorimeter shower shape requirements

Full Invariant Mass Range Dielectron

- * Having determined the background shapes, normalize the background to data in the low mass region
 - * For the Z' search: $60 \le M_{ee} \le 150 \text{ GeV}$
 - * For the RS search: $60 \le M_{ee} \le 200 \text{ GeV}$
- * Extrapolate normalizations to the full studied spectrum

Full Invariant Mass Range Diphoton

* Having determined the background shapes, normalize the background to data in the low mass region

- * For the Z' search: $60 < M_{ee} < 150 \text{ GeV}$
- * For the RS search: $60 \le M_{ee} \le 200 \text{ GeV}$
- * Extrapolate normalizations to the full studied spectrum

SETTING LIMITS

Systematic Uncertainties

Statistically limited analysis

Signal

Luminosity 6.1% **ID** Efficiency 3% per object Signal Acceptance 0.4% - 7.6% Uncertainty due to PDFs Signal Cross Section 3.4% - 17% Uncertainty due to PDFs EM Energy Resolution 6% Trigger Efficiency 0.1%

Background

ID Efficiency	3% per object		
DY ee NNLO mass dependent k-factor	5%		
QCD γγ NLO shape mass dependent	~10%		
Background Normalization	2% (M _{ee}) 10% (M _{YY})		

- * In the absence of a significant excess, proceed with setting a limit at the production cross section times branching ratio at 95% CL as a function of a test mass
- * Use a Poisson log-likelihood ratio (LLR) test statistics

- * In the absence of a significant excess, proceed with setting a limit at the production cross section times branching ratio at 95% CL as a function of a test mass
- * Use a Poisson log-likelihood ratio (LLR) test statistics
- * Interpret limit to a low mass limit for a variety of Z' models

Model	Z'_{SSM}	Z'_{η}	Z'_{χ}	Z'_{ψ}	$\mathrm{Z'}_{\mathrm{N}}$	$\mathrm{Z'}_{\mathrm{sq}}$	Z'_{I}
Limit Exp. (GeV)	1024	927	910	898	879	829	795
Limit Obs. (GeV)	1023	923	903	891	874	822	772

Model StSm	e = 0.06	ε = 0.05	ε = 0.04	ε = 0.03	ε = 0.02
Limit Exp. (GeV)	471	414	340	227	-
Limit Obs. (GeV)	443	417	289	264	180

- * Couplings for Z' models can be expressed in terms of the U(1)_{Z'} gauge coupling $g_{Z'}$
- * Interpret the 95% CL upper limit on the production $\sigma \times BR(Z' \rightarrow ee)$ on the $(M_{Z'}, g_{Z'})$ plane for the Z'_{χ} model. Provides a method of extracting limits for many Z' models.

Limit Calculation Randall - Sundrum Gravitons

- * In the absence of a significant excess, proceed with setting a limit at the production cross section times branching ratio at 95% CL as a function of a test mass
- * Use a Poisson log-likelihood ratio (LLR) test statistics
 - Interpret limit to a low mass limit for a variety of k/M_{Pl} values

Combine ee and γγ channels

Limit Calculation Randall - Sundrum Gravitons

PRL 104, 241802 (2010)

Splitting diEM events into ee and $\gamma\gamma$ spectra and tuning the analysis accordingly, provides an improvement of 1.5 - 2 over the increase of integrated luminosity

- * For $k/M_{Pl} = 0.1$, $M_1 < 1040$ GeV region is excluded at 95% CL
- * For k/M_{Pl} = 0.01, regions $M_1 \le 440$ GeV and $460 \le M_1 \le 560$ GeV are excluded at 95% CL

Limit Calculation Randall - Sundrum Gravitons

- * For $k/M_{Pl} = 0.1$, $M_1 < 1040$ GeV region is excluded at 95% CL
- * For k/M_{Pl} = 0.01, regions $M_1 \le 440$ GeV and $460 \le M_1 \le 560$ GeV are excluded at 95% CL

Summary and Conclusions

- * Searches for a heavy narrow resonance decaying to ee and/or γγ channels, have been performed using 5.4 fb⁻¹ of data collected with the DØ detector at the Fermilab Tevatron Collider
- * No evidence of a heavy narrow resonance is observed
- * Set upper limits on the production cross section time the branching ratio at 95% CL
- * Limits are interpreted in the frame of Z' bosons and RS gravitons
 - * Existence of SSM Z' with M < 1023 GeV is excluded at 95% CL
 - * PLB 695, 88 (2011)
 - * RS Graviton with M < 1040 GeV is excluded at 95%CL for coupling of 0.1
 - * PRL 104, 241802 (2010)
- * Even-though analysis may be updated with the full data-sample
 - * LHC experiments have already explored new territory at high mass
- * LHC at 14 TeV center-of-mass is expected to search for a Z' up to 5 TeV (higher for a RS Graviton)

Calorimeter Saturation Effects

Reconstructed di-EM invariant mass distributions for various signal samples

